What Causes (And Prevents) Spark Plug Fouling?

Understanding what causes spark plugs to get dirty can help prevent their failure.

Spark plugs are the “canary in the coal mine” of the combustion chamber. The electrodes and porcelain can reveal short- and long-term problems if you know where to look.

Most OE spark plugs have a life of more than 50,000 miles, thanks to electrodes that contain precious metals like platinum and iridium. OEMs consider the spark plugs a part of the emissions system on most modern vehicles.

If the plugs fail sooner than the recommended interval, it’s important to solve the problem before installing new plugs. If you are replacing spark plugs to solve a misfire problem, the car will be back.

But, first, what causes spark plugs to foul quickly? What does a fouled spark plug look like, and what is spark plug fouling?

Carbon Fouling 

If the spark plugs have a matte black or grey appearance, it could be carbon fouling — something typically caused by a fuel mixture that is too rich.

During normal combustion, most of the fuel oxidizes and changes into carbon dioxide and carbon monoxide gas. When there is more fuel than oxygen, the carbon in the unburned fuel polymerizes into carbon deposits. These molecules like to stick to the hot spots in the combustion chamber, and this includes the spark plug’s tip and insulator.

Curing the problem will typically point to the fuel system and how the engine is breathing. If a fuel injector is clogged or sticking open, extra fuel can cause carbon problems.

If the mass air flow sensor or oxygen sensors are not accurately reporting the air that’s coming into the engine or the oxygen content in the exhaust stream, it could cause a rich-running condition that can cause carbon to foul the spark plugs.

Another factor is how the air flows past the valves. If the air is restricted or has to flow past carbon deposits on the intake valves, it will be turbulent and disturb the flame front and fuel droplet size in the combustion chamber. This means that the fuel injected into the intake port or combustion chamber will not entirely burn.

Oil Fouling

Oil fouling of a spark plug typically results in a shiny, black appearance. If enough oil is in the combustion chamber, the deposits can build up on the tip, porcelain or shell.

If you can’t determine if it is carbon or oil fouling, smell the plug; it will smell like engine oil. The oil can come from the piston rings, valve stem seals or the positive crankcase ventilation (PCV) system. Leaking piston rings can be diagnosed with a leak-down test. If one cylinder has oil fouling, a relative compression check can help to assess mechanical issues with that cylinder.

Malfunctioning PCV systems are becoming a leading cause of oil fouling in modern engines. These systems have become more than just a spring-loaded check valve. Modern systems can separate oil from the crankcase vapors and electronically regulate when the engine ingests the vapors.

Some PCV systems have a heater to ensure that the valve does not freeze under certain conditions when condensation is present. If the valve does freeze, it can cause higher-than-normal crankcase pressure. This can cause oil to be forced past the valve seals.

If the PCV valve is stuck open, the excess vapors and oil droplets can quickly foul the spark plugs.

A failed turbocharger can be another source of spark plug oil fouling. The seals on the turbine shaft are robust, but they can be victims of heat and poor oil quality. The oil that lubricates the shaft can enter into the pressurized intake and eventually the combustion chamber.

OEMs have issued TSBs concerning excessive oil consumption. Most of these problems relate to cylinder deactivation and variable valve timing.

The main culprit in these problems is vacuum generated in the cylinders that sucks engine oil past the rings and into the combustion chamber. On vehicles with cylinder deactivation, the deactivated cylinder has negative pressure and draws oil droplets in the crankcase past the ring and eventually into the converter. This has happened on some GM and Honda engines.

On some vehicles with variable valve timing (typically on the exhaust and intake cams), the valve timing could produce higher-than-normal vacuum pressures that could suck oil past the rings. This was the case for some recent Toyota, Honda and GM models. The customer would report increased oil consumption that exceeded one quart every 1,000 miles.

Beyond the oil getting past the rings, the oil trapped in the rings can become carbonized and cause damage to the cylinder walls. This can lead to even more damage and more oil consumption. In some cases, the oil consumption results in a low-oil condition that would cause damage to the bearing surfaces.

Coolant Problems

Internal coolant leaks can foul a spark plug and cause a misfire. The problem could be a leaking intake manifold or a head gasket, and the fouled plug might be localized to one or two adjacent cylinders. The burned coolant leaves ashy, white deposits on the electrodes and insulator, creating hot spots that could cause pre-ignition and a misfire code to be set.

When the plug is pulled, it might have a chalky appearance on the ground strap and center electrode. Modern coolants do not cause this type of buildup quickly, due to the reduction of phosphate, zinc and other additives that can contaminate the catalytic converters. 

In the past, the converter would become clogged and stop the engine before significant damage occurred. 

Unfortunately, formulations mean that drivers can run a vehicle with a coolant leak for several thousand miles, while the plug becomes slowly fouled.

You May Also Like

Ignition System Tests You Should (And Shouldn’t) Follow

Do your technicians use tests that might give inconclusive results or do damage to the coil or drivers inside a module?

One of the most basic circuits found on every gasoline-powered vehicle is the ignition coil. This transformer takes low-voltage, high-amperage current and changes it into high-voltage current. It has two windings that are not physically connected. What connects them is magnetism. The primary creates an electromagnetic field when system voltage is applied. When the power is turned off, the magnetic field collapses. The energy from the primary is transformed by the secondary windings into high-voltage power that can jump the gap between the electrodes of the spark plug; this is called inductance.

ADAS Technology and Vehicle Alignment

ADAS and autonomous features rely on the alignment being exactly to OEM specifications to perform correctly.

Repairing Wiring Harnesses

We explore the basics of probing and poking.

Top 10 ADAS Calibration Tips

You may have done alignments for years – but are you certain you’re meeting ADAS alignment requirements?

Shift pointers: Tricky Sensor Situations

Diagnostic skill implemented by one transmission technician allowed him to find success with two repairs in one day.

Other Posts
ShopOwner’s February Digital Edition Available Now

ShopOwner includes valuable business management and technical editorial content.

Performing a Corner Check

Performing a corner check to inspect the condition of the steering, suspension and drivetrain components should be part of your normal routine. This video is sponsored by GSP North America.

MPA To Offer Free Part Smart Training in 2024

All training sessions are free and will be captured on video. Certificates of completion will be provided.

Answer Any Business Question With Confidence

Whatever comes along, confidence that you’ll overcome it will help you come out on top.